
UCRL-JRNL-235640

Imperfect Crystal and Unusual
Semi-Conductor: Boron, a
Frustrated Element

T. Ogitsu, F. Gygi, J. Reed, E. Schwegler, G. Galli

October 18, 2007

Journal of the American Chemical Society



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Imperfect crystal and unusual semi-conductor: Boron, a 

frustrated element 

 

Tadashi Ogitsu1, François Gygi1,2, John Reed1, Eric Schwegler1, and Giulia Galli1,2 

 

1Lawrence Livermore National Laboratory, CA, USA; 

2University of California, Davis, CA, USA. 

 

All elements, except for helium, appear to solidify into crystalline forms at zero 

temperature, and it is generally assumed that the introduction of lattice defects results in a 

loss of internal energy. Here we suggest that boron is another exception. By using lattice 

Monte Carlo techniques combined with ab-initio calculations, we find that the most 

stable phase of boron (β-boron), is non-crystalline, with a unique combination of partially 

occupied sites. The inclusion of defects stabilizes β-boron by converting two-center 

bonds into the three-center bonds characteristic of many boron compounds, and by 

adjusting its Fermi level to the top of the valence band.  These defects are also 

responsible for the presence of localized, non-conductive electronic states in the optical 

gap. 

 



 

 In the periodic table boron occupies a peculiar, crossover position: on the first 

row, it is surrounded by metal forming elements on the left and by non-metals on the 

right. In addition, it is the only non-metal of the third column. Therefore, it is perhaps not 

surprising that the crystallographic structure and topology of its thermodynamically 

stable allotrope (β-boron, space group 

! 

R3 m)1,2,3 is not shared by any other element, and 

is extremely complex. It is experimentally known that β-boron contains many partially 

occupied sites (POS), with occupation rates that are not integer numbers, varying roughly 

from 2% to 75% from site to site3. The most accurate experimental estimate of the 

number of atoms in the hexagonal cell is 320.13, which corresponds to approximately 106 

2/3 atoms per rhombohedral cell, implying a violation of rhombohedral symmetry. No 

experimental evidence of lower symmetry and/or longer-range ordering, presumably 

detectable by X-ray diffraction, has been reported. Therefore, it is reasonable to assume 

that at finite temperature the presence of POS break the translational symmetry of β-

boron. It remains an open question whether this imperfect crystal is also the most stable 

structure of elemental boron at zero T; if so, boron is the first known example of an 

element not crystallizing in a fully ordered form. 

 A simpler allotrope of boron is the α-phase, that has a crystalline structure with 

12 atoms per rhombohedral cell (space group 

! 

R3 m  and no POS). To date, there are no 

experimental data discriminating between the relative stability of the boron allotropes4,5. 

Large kinetic barriers and/or high melting temperatures (Tmelt = 2349 K for β-boron) have 

possibly prevented accurate measurements by unambiguous techniques, such as 

calorimetry.  α-rhombohedral boron has been extensively examined by ab-initio density 



functional theory (DFT) calculations, and there are also a number of ab-initio 

investigations where α- and β-boron total energies6,7 have been directly compared8,9,10,11. 

In the vast majority of these studies a small subset of the possible POS configurations 

were accounted for and it was concluded that α-boron is more stable than β-boron at zero 

temperature8,9,11. However, one recent investigation indicates that it is possible to find an 

arrangement of POS in β-boron, that makes it more stable than the α-phase10. Due to the 

astronomical number of possible combinations of POS configurations, in all of the 

theoretical investigations that have appeared so far, the choice and occupation of POS 

have been based on semi-empirical electron counting rules, experimentally measured 

occupation rates, and ab-initio studies on small gas-phase boron clusters.  The lack of a 

systematic, non-empirical optimization has so far prevented a microscopic description of 

the mechanisms by which defects (i.e. POS) may stabilize β-boron and ultimately an 

understanding of why such an unusual ground state should be energetically favored.    

 In this paper, we used a combination of lattice model Monte Carlo techniques and 

ab-initio Density Functional Theory (DFT) total energy calculations to carry out the first 

global configuration space search of POS occupations in β-boron. The results of this 

optimization procedure allowed us to identify a series of β-boron structures degenerate in 

energy and more stable than α-boron at zero T. These are disordered structures with 

intrinsic doping, exhibiting localized electronic levels within the optical gap. The 

presence of POS enables the conversion of conventional two-center bonds, present in 

non-defective β-boron, into three-center bonds characteristic of many boron 

compounds12,13. 



 Fig.1 illustrates the building blocks of β-boron. The main backbone can be 

viewed as 20 B12 icosohedra located at the corners and edges of a rhombohedral cell with 

two B28 clusters connected by an interstitial atom in the center. Within this backbone 

there are 15 inequivalent sites (i.e. not related by symmetry operations), which we refer 

to as B1-B15, following previous works2,3. The B13 site, which is located in the B28 

clusters next to the interstitial atom (see Fig 1b), is a vacancy-type POS, known from 

experiment to have an occupation of approximately 75%2,3. If all of the B13 sites were 

fully occupied, β-boron would be a perfect crystal with 105 atoms in a rhombohedral unit 

cell (commonly referred as hR105). In addition to the main backbone, five additional 

inequivalent sites B16-B20 (see Fig. 1c-g) have been identified as POS by experiment14. 

In all of the previous ab-initio studies where β-boron was found to be higher in energy 

than α-boron, the atomic density was an approximation of the experimental value, 

corresponding to 320 atoms per hexagonal cell, due to computational limitations (and the 

B17-B20 POS were not taken into account15); on the other hand,  in the one ab-initio 

study where β-boron was found to be more stable than α-boron, the experimental atomic 

density was used and some of the B17-B20 POS were examined16. 

In order to carry out an optimization of the β-boron structure including all of the 

POS (B13, B16-B20), a cost-efficient global configuration space search scheme is needed 

due to the huge number of possible POS configurations. There are 
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configurations17 for the 1280 atom supercell that we have used in this work. Therefore, 

we employed an optimization procedure that couples ab-initio DFT and Cluster 

Expansion / Monte Carlo (CEMC) techniques18,19,20 (a more detailed description can be 

found in the Supplemental Material 3). This computational procedure is similar to the 



approach often used to determine the composition and location of impurities or defects in 

a known crystal lattice20 or the composition and ordering of species in an alloy18,19. In our 

case, we mapped the POS occupation numbers onto a spin Hamiltonian and expressed the 

total energy of the β-phase as a linear combination of correlations in occupancy between 

different sets of POS. The coefficients of such an expansion were fitted to ab-initio total 

energy data obtained for a large set of configurations. Our optimization strategy consists 

of the following steps:  (i) We considered rhombohedral cells with both 106 and 107 

atoms (hR106 and hR107, respectively, corresponding to 318 and 321 atom/hexagonal 

cells, thus bracketing the number of atoms/cell proposed experimentally, i.e. ~ 320). The 

total number of possible configurations (~150 million in the case of hR107) was 

restricted to symmetrically independent and physically relevant ones (see Supplemental 

Material), thus reducing their number to 2591. (ii) Using the correlation coefficients 

obtained by fitting these 2591 total energies, we constructed a spin Hamiltonian for 

supercells containing 1280 atoms (referred to as hR1280 hereafter). (iii) Monte Carlo 

simulated annealing cycles with the Metropolis algorithm were then performed for this 

Hamiltonian. (iv) The most stable hR1280 structures obtained by the MC annealing 

procedure were further optimized using ab-initio methods, by relaxing both atomic 

positions and cell parameters21. (v) The new ab-initio results were inserted back into the 

database fit to improve the model, and further iterations of steps (iii) and (iv) were carried 

out22.  

 By using this coupled CEMC/ab-initio procedure we identified a family of 

optimized structures (see Fig. 2) with very similar total energies that are several 

meV/atom lower than that of α-boron (the total energy of the most stable one is 7.5 



meV/atom below that of α-boron). These total energies were computed by including the 

zero point energy (ZPE) contribution evaluated from ab-initio full phonon dispersion 

calculations23. The total energies of these stable structures are within a few meV/atom of 

each other, suggesting a highly degenerate character of the β-boron ground state.  

The key features found in the stable hR1280 structures are that specific sets of 

POS are always occupied, and that the POS occupation configurations exhibit clear short-

range correlations that are responsible for structural stabilization. In particular, B17 and 

B18 POS are always present in the lowest energy structures, and the absence of B19 

and/or B20 POS only lead to a negligibly small increase in the total energy of the β-phase 

(see Table S3.1 of the Supplemental Material). The B17 and B18 POS in hR1280 always 

appear in a paired configuration next to two B13 vacancies, similar to previous 

predictions by Slack et al.3. However, in our stable structures the location of the B13 

vacancies are quite different from those suggested in Ref. [3]; we find the inclusion of 

two B13 vacancies on the same B28 cluster to be highly unfavorable, as compared to 

distributing them on opposite sides of the interstitial atom linking two B28 clusters (see 

Fig. 1b). We note that the occupation of B19 or B20 POS only takes place when there is a 

single B13 vacancy nearby.  

 In order to rationalize the observed trends in the POS occupations, we analyzed 

the bonding properties of β−boron by means of maximally localized Wannier functions 

(MLWF)24, which are analogous to the Boys orbitals commonly used in quantum 

chemistry to investigate bonding properties of compounds. (See Supplemental Material 5 

for the calculation procedure used here, as well as a discussion on the relation between 

MLWFs and bonding properties.) Fig. 3a shows the MLWFs for the perfect β-boron 



structure (with no POS), which are located either on bonds within icosahedra (intra-B12 

and intra-B28 bonds) or on inter-icosahedral bonds (B12-B12 linkages, and B12-B28 

linkages). The occupation of these orbitals can be defined by using the unitary 

transformation relating MLWFs and electronic eigenstates. With this procedure, we find 

that the inter-icosahedral bonds are more electron deficient than intra-icosahedral bonds, 

particularly the ones corresponding to the B12-B12 linkages25, which surrounds the B16 

POS sites. From Fig. 3b-c it is clear that the inclusion of B13 vacancies and B16 POS in a 

perfect β-lattice leads to dramatic changes in the distribution of electron deficient bonds 

within the lattice. In both of the configurations shown, the originally electron deficient 

two-center bonds in the B12 linkages are converted to fully occupied three-center bonds 

due to the presence of B16 POS. In addition, the presence of a B13 vacancy causes the 

electron deficiency character of bonds to be shifted to the B28 units.  

 If one assumes that the most electron deficient bonds are likely to be the most 

chemically active, then it is reasonable to expect that the POS nearby the electron 

deficient bonds will be preferentially occupied. This is precisely consistent with what we 

observe in the optimized, stable hR1280 configurations: When one B13 vacancy is 

present in a (2B28)B unit, the closest B19 POS is occupied. In this case, the formation of 

three-center bonds around the B19 atom is clearly observed (Fig 3d), and simultaneously, 

all the electron deficient bonds in the B28 unit are now fully saturated (compare Fig 3b 

and 3d). Essentially the same trends in the electronic structure are found when the B20 

site is occupied next to a B13 vacancy (see Supplemental Material 5). When two B13 

vacancies are present in a (2B28)B cluster, the nearby B17-B18 paired sites are occupied, 



and the saturation of electron deficient bonds occurs (compare Fig 3c and 3e). However, 

the formation of unambiguous three-center bonding is not as clear.   

 Jemmis et al. pointed out two important facts about bonding in solid boron, 

derived from empirical mno rules, and confirmed by ab-initio total energy calculations on 

the isolated B12 and (2B28)B clusters25. They found that B12 clusters are more electron 

deficient than B28 (this can also be seen in Fig. 4a) and that the full occupation of B13 is 

energetically unfavorable in B28 clusters, which we confirmed with our solid phase 

calculations. The relatively high occupation rate of B16 is clearly related to the electron 

deficiency imbalance between B12 and B28, while the smaller B17-B20 occupations are 

controlled by the number of available B13 vacancies.  

 To summarize, we have identified two distinct stabilization mechanisms: one 

involves the conversion of two-center to three-center bonding near B16, B19, and B20 

sites, and the other leads to B17-B18 pairing next to B13 vacancies. Interestingly, the 

former mechanism amounts to perfect self doping, as each POS atom brings three valence 

electrons without changing the number of valence states (three, two-center bonds are 

converted into three, three-center bonds); the latter mechanism corresponds instead to a 

partial self doping effect because an additional bonding state is introduced into the 

valence band (see the Supplemental Material 5 and 7 for additional details). Self-doping 

in β-boron is an interesting consequence of the POS occupation, also leading to the 

adjustment of the Fermi level to the excitation gap26. Recently, Tang and Ismail-Beigi 

studied the stable forms of boron in 0-D (clusters) and 2-D (sheets) using DFT total 

energy calculations, and found that the balance between three- and two-center bonds 

leads to a full occupation of in-plane bonding states (with no occupied anti-bonding 



orbitals)27. This is essentially the same mechanism that we have found to occur in the 

presence of  POS sites in the 3-D β-boron structure, with the exception of the B28 unit, 

which has an intrinsic instability at the B13 site25. 

Finally, we compare our findings on the electronic structure of β-boron with 

experimental observations. The comparison is qualitative, since experimentally, β-boron 

is usually prepared from the melt, and therefore actual β-boron samples at low-T are 

likely to contain meta-stable POS configurations that are frozen into their high-T 

equilibrium states. Our ab-initio molecular dynamics simulations suggest that the onset of 

diffusion of the POS atoms occurs at roughly 1000 K. The electronic structures of the 

hR1280 systems considered in our calculations vary significantly, in particular near the 

Fermi level, even for geometries with similar energies. However, there are some general 

trends that can be identified. The most stable structures tend to have the largest gap with 

the fewest number of intrinsic gap levels, while the meta-stable structures tend to have a 

large number of gap levels (see Supplemental Material 7). Most of the experimental 

reports indicate the presence of gap levels28,29, consistent with our results. Our most 

stable hR1280 structure has an electronic band gap of 0.8 eV, which is smaller than 

experiment (1.5 to 1.6 eV)28,29. However, considering the possible uncertainty in the 

structure of real β-boron samples at finite T, and the well-known tendency of the local 

density approximation to underestimate gaps, this level of agreement is reasonable. We 

have also computed the optical conductivity of one of the hR1280 structures within the 

Kubo-Greenwood formalism 30 , 31 . Our estimate for the DC conductivity is 
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50± 50[1/"cm] at T=300 K, while the experimental value within the impurity free limit 

is of the order of 
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3. As the Kubo-Greenwood formula does not account for 



inelastic electron-phonon scattering, our estimate should be considered as an upper bound 

value, and as such the agreement with experiment is satisfactory. As indicated in Fig. 4, 

our computed low conductivity in the presence of gap states is due to the highly localized 

nature of these states, which resemble those found in a disordered semiconductor.  

It is interesting to note that the persistence of B17-B18 pairs in our most stable 

hR1280 configurations always results in the introduction of additional bonding states. In 

contrast, the occupation of B19 and/or B20 POS does not modify the number of valance 

states (see Supplemental Material 5). This implies that if the ground state atomic density 

is exactly 320 atoms per hexagonal cell, and the true ground state structure indeed 

possesses B17-B18 pairs, then the ground state of elemental boron cannot be a perfect 

semiconductor. 

 Although boron is the only element whose stable solid structure is composed of 

icosahedral building blocks, we note that other 3rd group elements exhibit a well-known 

tendency to form icosahedral quasicrystal compounds, such as aluminum-magnesium-

zinc32 or gallium-magnesium-zinc33.  It is generally believed that the Hume-Rothery 

mechanism plays an important role in the stabilization of these systems34,35,36,37, where 

the presence of mid-range ordering leads to an opening of a pseudo gap in the free 

electron like density of states of an aperiodic intermetallic compound; this in turn causes 

a preference for stoichiometries where the Fermi level coincides with the minimum of the 

pseudo gap35. An analogy with quasi-crystals can be found in the stabilization 

mechanisms we have identified here for β-boron; however, in the present case it is the 

conversion of bonding types (from two to three-centers) that leads to the Fermi level 

adjustment. An interesting question is why other 3rd group atoms do not form 



icosahedron-based elemental solids, similar to boron. In this respect, we note that 

recently Haussermann et al. performed DFT enthalpy curve calculations on the 3rd group 

elements, and their results suggest that, under negative pressures, both gallium and 

aluminum exhibit icocahedron-based structures38.  

 In conclusion, we have used a coupled CEMC/ab-initio technique to perform the 

first global configuration search on β-boron that includes all of the experimentally known 

POS. The resulting DFT total energies (including ZPE) of a series of stable hR1280 

systems were found to be lower than that of the allotrope α-boron. The presence of 

defects, or POS, helps reduce the electron deficiency of the perfect lattice and gives rise 

to three-center bonds characteristic of boron compounds, and to localized gap states. We 

find that the ground state of boron can be best described as a degenerate disordered 

semiconductor with self-doping sites, and this makes it the only known element of the 

periodic table with such characteristics. 

 
             This work performed under the auspices of the U.S. Department of Energy by 
 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

 



Figure captions: 

Fig.1: The building blocks of β-rhombohedral boron: a) icosahedral B12 units (green 

balls) are located at the corners and the middle edges of the rhombohedral unit-cell. Two 

B28 units and an interstitial atom (gold balls) are located in the middle of the unit-cell. In 

b) through g) the locations of the partially occupied sites (POS) are represented by red 

and blue balls, with the same naming scheme used in Ref. [3]. In b) the B13 sites form 

trimmers in the B28 units (red balls), and in c) the B16 sites are located at the center of the 

hexagonal rings connecting the B12 units (red balls). In d) the B17 and in e) the B18 sites 

(blue balls) next to and surrounding the B13 sites are shown. Finally, in f) the B19 and in 

g) the B20 sites (blue balls) located at the middle of the hexagonal rings connecting B12 

and B28 units are shown.  



Fig.2: The relative ab-initio DFT total energies, including zero-point energy contributions, 

of α-rhombohedral boron (black triangle), perfect β-rhombohedral boron (red triangle, 

105 atoms in the rhombohedral unit-cell), β-rhombohedral boron with only B13 and B16 

POS from Ref. [9] (green triangle). The blue circles and the yellow squares are the ab-

initio DFT total energies of hR1280 systems obtained in steps (iv) and (v) of the 

CEMC/ab-initio procedure (see text). Each symbol corresponds to the total energy of a 

single hR1280 structure (not an averaged value). 



 Fig.3: Isosurfaces of the square of maximally localized Wannier functions (MLWFs)24,39 

where the color represents the occupation (η), blue: 1≥η≥0.95, and red: η<0.95 (see the 

Supplemental Material 5 for additional details). The isosurface value is set at half of the 

maximum value of the square of the MLWF. Structure a) corresponds to the perfect 

hR105, where the electron deficient bonds are present near the hexagonal rings 

connecting the B12 units. Note that the center of the hexagonal ring coincides with the 

B16 POS. b) and d) demonstrate the effect of occupying a B19 POS. The red ball in b) is 

the location of a B13 vacancy and the red ball in d) is the B19 atom (occupied). 

Comparison of b) and d) clearly demonstrates the elimination of electron deficient bonds 

[the red isosurfaces in b) and the absence of the red isosurfaces in c)] and 2-center to 3-

center bonding conversion [the blue triangular isosurface around the red ball in d)]. c) 

and e) illustrate the termination of dangling (deficient) bonds created by two B13 

vacancies. The two red balls in c) correspond to the location of the B13s, and the two red 

balls in e) are the B17-B18 pair. Note that no red isosurfaces are present in e). 

 



Fig. 4: Participation functions of eigenstates from one of the 1280 atom supercells of β-

boron and the hR105 perfect β-boron. The participation function, defined as 
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where Ψi(r) is the ith eigenstates of the system and V is the volume of supercell, 

represents the localization length scale of the eigenstate.
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Supplemental Material 1: General Methods 
For all of our total energy calculations, except for the Cluster Expansion Monte Carlo 
(Ref. [19-21] in the manuscript) for the configuration space search, we have used density 
functional theory (DFT)1, 2 within the local density approximation (LDA)3,4  unless 
otherwise noted. Our total energy comparisons involved both the comparison between 
different unit-cell sizes (α-rhombohedral boron and β-rhombohedral boron) and the 
comparison between equivalent unit-cells (different POS occupations in β-rhombohedral 
boron), which require different settings of calculations (described later). To perform the 
individual calculations in the most efficient manner, we have used three different ab-
initio DFT codes, GP5 and Qbox6 codes written by François Gygi (co-author) and the 
PWSCF code distributed at www.quantum-espresso.org. For all of our calculations, we 
have used the planewave expansion scheme with norm-conserving Troullier-Martins 
optimized pseudopotentials7 for ions. The consistency on the basis set (cutoff energy), 
the pseudopotential, the exchange-correlation potential, was always kept for the 
individual comparisons. The numerical accuracies of the three codes were tested with 
identical calculation conditions, and it was confirmed that agreement over 8 digits was 
possible (i.e., the discrepancy was on the order of 10-3 meV/atom or less). 
 
Our goal is to compare the total energies between α-rhombohedral boron (12 atom cell) 
and β-rhombohedral boron with the optimized POS occupation (1280 atom cells). 
Maintaining the same level of accuracy for these two systems is challenging for the 
following two reasons. One is the finite size effect on the electrons, and the other is the 
physical approximation, namely the LDA. First, we discuss the possible error coming 
from LDA. Then, we discuss how we deal with the finite size effects for these two very 
different systems. The details concerning the choice of the calculation parameters as well 
as an accuracy assessment will follow. 
 
It is often believed that the reason why LDA (GGA) provides very accurate energy 
difference between two systems is that, in many cases, the error in the absolute energy of 
each system cancels each other when the difference is taken. Of course, this will not be 
the case if the LDA (GGA) error in the each system varies significantly. For example, the 
LDA error on the dissociation energy of molecule is known to be relatively large. One of 
the common explanations of this problem is the difference in the localization length, that 
is, an atom has a more localized electronic eigenstates than those of molecule, therefore, 
the binding energy of a molecule is usually overestimated within LDA (meaning that the 
relative total energy of an atom to that of a molecule is too high compared to that of the 
exact value). Considering this general trend, it is likely that the LDA error does not have 
an impact on our conclusions. In particular, the perfect β-boron has quite similar bonding 
                                                
1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).  
2 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 
3 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980). 
4 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 
5 F. Gygi, GP 1.24.0: A General Ab Initio Molecular Dynamics Program (Lawrence 
Livermore National Laboratory, Livermore, CA, 2003). 
6 F. Gygi, Qbox, a large-scale parallel implementation of First-Principles Molecular 
Dynamics, http://eslab.ucdavis.edu/. 
7 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). 



properties with α-boron, and the LDA errors in the two structures should be very similar. 
When the POS atoms are introduced, as it is seen in the Fig 4 of the manuscript, the 
overall average localization of occupied states does not change, although the variation at 
a fixed energy is reduced (localization is enhanced only near the gap). Therefore, we 
expect that the impact of LDA error on our results is minor, and our conclusion should 
not be significantly affected. In addition, we have made a number of comparisons 
between LDA and GGA (described in the next section), which provides further support 
that our conclusions are not biased by the use of LDA. 
 
Next, due to the large difference in the size of unit-cells between α-boron and β-boron, 
particularly when the POS atoms are included, very careful attention has to be paid on the 
error coming from the finite size effect on the electrons, i.e., k-point sampling. For this 
reason, a comparison was made in two steps. The first step involves comparing α-boron 
and perfect β-rhombohedral boron (no POS) with the irreducible cell (105 atoms in the 
rhombohedral cell), where absolute convergence on the k-points sampling can be 
achieved. The second step is to compare β-rhombohedral boron with and without POS 
occupancy. In the second step, we used a very large supercell (12 times that of the 
rhombohedral cell), and the total energy comparison was made between the same choice 
of the supercell and the same k-point sampling (Γ-point), which ensured that the finite 
size errors are equivalent between the two structures. The calculation parameters used to 
compute the energies reported in Figure 2 of the manuscript were selected so that the 
total energies of perfect β-boron computed with k-point sampling in irreducible cell and 
with Γ-point sampling in a supercell are equivalent. All of the other energies, α-boron 
and β-boron with POS, were computed within this framework. The details of the 
calculation parameters and the assessment of accuracy in these steps are further explained 
in the Supplemental Material 2.  
 
Note: In the first step, a higher planewave cutoff energy (40 Ry) was used than in the 
second step (30 Ry) since the first step is potentially more sensitive to the cutoff energy. 
The reason is as follows. The planewave basis set for a given system is defined by both 
the cutoff energy and the unit-cell. Therefore, the basis set defined by the different sizes 
of unit-cells (but the same cutoff energy) can have different accuracies due to the 
discontinuous cutoff on the Fourier coefficients. This is essentially the same problem that 
is encountered with variable cell simulations, where the total energy changes 
discontinuously when the cell size changes due to an abrupt change in the number of 
Fourier coefficients. This error should be negligibly small as long as the cutoff energy is 
large enough so that the Fourier coefficients of the planewaves beyond the cutoff energy 
are essentially zero. In practice, when very large supercells are used, absolute 
convergence with respect to the cutoff energy is not feasible. On the other hand, when the 
total energy comparisons are made on exactly the same unit-cell and the same cutoff 
energy, this type of error does not take place since the basis sets of those systems are 
equivalent. Because of above reasons, we have used a larger cutoff energy for the first 
step than the second step (40 Ry for the first step, while 30 Ry for the second step). As it 
is described in the Supplemental Material 2, the validity of these choices is carefully 
verified with a few selected cases. 
 
 



Pseudopotentials and LDA vs GGA: 
For all of the DFT total energy calculations, the planewave/pseudopotential approach has 
been taken, where a norm-conserving Troullier-Martins optimized pseudopotential was 
used8. For all of the structural optimizations, the s-nonlocal and p-local configuration 
type pseudopotential was used for boron. The core cutoff radius, rc=1.670 au, was used 
for all the angular momentum states. For a few randomly selected supercell systems 
(1260 atoms per cell and 1280 atoms per cell), the energy difference calculated with this 
pseudopotential was compared with those calculated with a more accurate 
pseudopotential, i.e., s- and p-nonlocal, d-local. The change due to the difference in the 
pseudopotentials was negligibly small. The Purdue–Zunger LDA4 was used for all the 
DFT results presented in our manuscript as well as the Supplemental Material. For the 
same set of supercell systems mentioned above, a comparison on the DFT total energy 
differences between LDA and the PBE GGA9,10 was made. in all cases, the differences in 
energies were less than 3 meV/atom. Note: Setten et al. (ref [10] in the manuscript) used 
the PW91 GGA11,12, where their total energy of the perfect β-boron relative to α-boron is 
+26 meV/atom (4 meV/atom smaller than our estimate with LDA). Therefore, our 
estimate on the relative total energy of hR1280 systems to that of α-boron should be 
higher than the GGA value. Assuming the general trend that GGA total energies are more 
accurate than LDA energies, it is reasonable to expect that the exact relative total energy 
of β-boron to that of α-boron is likely to be lower than our estimate based on LDA. 
 
Accuracy of our calculations: 
Here we list the lattice parameters and the bulk modulus calculated in this work together 
with experimental values and a few other DFT results. Our results are in excellent 
agreement with the available experimental data and the previous calculations. This 
indicates that LDA accurately describes the physical properties of the bulk phase of 
boron. 

                                                
8 The fhi98PP program package was used to generate all the pseudopotentials used in 
this work. See http://www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP/ for the detail of this 
program package. 
9 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 
10 The pseudopotential is also regenerated with PBEGGA. 
11 J. P. Pewdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996).  
12 J. P. Perdew, in Electronic Structure of Solids `91, edited by P. Ziesche and H. Eschrig 
(Akademie Verlag, Berlin, 1991), p.11. 



 
 a [A] (rh) α a [A] (hex) c [A] B0 [GPa] B0’ 
Exp113 10.145±0.015 65°17′±8′ 10.944 23.811   
Exp214 10.17±0.05 65°12′±20′ 10.959 23.887   
Exp315 10.139 65°20′ 10.945 23.787   
Exp4-116   10.932(1) 23.818(3)   
Exp4-2   10.930(1) 23.815(3)   
Exp4-3   10.930(1) 23.815(3)   
Exp4-4   10.925(1) 23.810(3)   
Exp4-5   10.932(2) 23.819(5)   
Exp517   10.934(11) 23.79(3) 185(7)  
Exp618 N/A N/A N/A N/A 210(6) 2.23 
Exp719 N/A N/A N/A N/A 205(16) 4.3(1.6) 
DFT120 10.02 65.09° 10.78 23.56   
DFT221 10.14 N/A     
DFT322 9.996 65.22° 10.774 23.474 203.5 4.5 
This work 1 9.957 65.38° 10.755 23.350   
This work 2   10.789 23.530   
This work 3     208.79 3.19 
This work 4     208.33 3.22 
 
Table S1-1: The theoretical and experimental lattice constants, bulk modulus and its 
pressure derivative of β-boron. 
 
The optimized structure of Setten et al. can be found with the following link: 
http://pubs.acs.org/subscribe/journals/jacsat/suppinfo/ja0631246/ja0631246si20060504_1
05848.cif. Note: Their cell parameters deviate from rhombohedral symmetry, therefore, 
to avoid confusion, we did not include this in the table. The cell parameters in Exp1-3 
were given for the rhombohedral cell, while the rest are given for the hexagonal cell. The 
experimental data, from Exp 4-1 to Exp4-5, correspond to the five different samples 
listed in the Table VII of Ref. [16], MG77, MG57, MG79, MG179, and Eagle Picher, 
respectively. Note: The differences between the MG samples are the cooling rate when 
                                                
13 R. E. Hughes, C. H. L. Kennard, D. B. Sullenger, H. A. Weakliem, D. E. Sands, and J. 
L. Hoard, J. Amer. Chem. Soc. 85, 361 (1963). 
14 Von D. Geist, R. Kloss and H. Follner, Acta Cryst. B26, 1800 (1970). 
15 Bengt Callmer, Aca Cryst B33, 1951 (1970). 
16 G. A. Slack, C. I. Hejna, M. F. Garbuskas, and J. S. Kasper, J. Solid State Chem. 76, 
52 (1988). 
17 R. J. Nelmes, J. S. Loveday, and D. R. Allan, Phys. Rev. B 47, 7668 (1993). 
18 D. N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002). 
19 Y. Ma, C. T. Prewitt, G. Zou, H.-k. Mao, and R. J. Hemley, Phys. Rev. B 67, 174116 
(2003). 
20 J. Zhao and J. P. Lu, Phys. Rev. B 66, 092101 (2002). 
21 D. L. K. Prasad, M. M. Balakrishnarajan, and Eluvathingal D. Jemmis, Phys. Rev. B 
72, 195102 (2005) 
22 A. Masago, K. Shirai, and H. Katayama-Yoshida, Phys. Rev. B 73, 104102 (2006) 



they were solidified. In Exp5, a linear fit was used to obtain the bulk modulus (B0), 
therefore, B0’ is not given. This is most likely due to the narrow pressure range that they 
measured in their experiments (compared to Exp6 and Exp7). In the Exp6, the Vinet fit 
was used to calculate B0 and B0’, while in Exp7, Birch-Murnaghan equation of state was 
used. We have tested the difference coming from the different equation of state models. 
The B0, and B0’ in ‘This work 3’ is calculated by the Vinet fit, while the ones in ‘This 
work 4’ is calculated by the Virch-Murnaghan fit. This indicates that the difference 
coming from the fitting functions should be negligible as long as the equations of state 
curve itself is well defined. The equation of state itself for those calculations are the same 
one obtained with a 1280 atom supercell (320 atoms per hexagonal cell). For this, we 
have calculated the P-V relation at the four different pressures, 0Gpa, 25GPa, 50GPa, and 
75GPa. The parameters in ‘This work 1’ are calculated with the perfect hR105 (no POS), 
which is 105 atoms in the rhombohedral cell. The parameters in ‘This work 2’ are 
calculated with one of the 1280 atom supercell (320 atoms per hexagonal cell) structures. 
The POS configuration dependency on the lattice parameters was negligibly small. 
 
For the convenience of the readers, we summarize the various calculation details used in 
the theoretical results listed in the previous table. 
 
 Pseudopot Cutoff k-points LDA/GGA # of atoms/Unit-cell 
DFT1 Ultra-soft23 240eV 33 (rh-cell) GGA24 105/rhombohedral 
DFT2 Ultra-soft23 N/A N/A GGA9 105/rhombohedral 
DFT3 TM7 40Ry Γ-point LDA4 105/rhombohedral 
This work 1 TM7 40Ry25 33 LDA4 105/rhombohedral 
This work 2-4 TM7 30Ry25 Γ-point LDA4 1280/supercell 

(320/hex-cell) 
 
Table S1-2: The calculation scheme and the parameters for the DFT results listed in 
Table S1-1.

                                                
23 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 
24 Y. Wang and J. P. Perdew, Phys. Rev. B 43, 8911 (1991) 
25 Checked up to 60Ry. See the supplemental material 2. 
27 The electronic density of states (EDOS) of this system is shown in the supplemental 
material 7. 



Supplemental material 2: Comparison of total energies of β - and α-boron 
allotropes: Assessment of convergence of ab-initio calculations.  
Two key parameters controlling the convergence of plane-wave-pseudopotential 
electronic structure calculations are the size of the plane wave basis set (expressed in 
terms of kinetic energy cutoff—Ecut) and the number of points used to sample the first 
Brillouin zone (or number of k-points--Nk). When the total energies of different crystal 
structures of a given system are compared, it is particularly important to check the 
convergence with respect to Nk, especially so when the unit cell sizes of the two 
structures are significantly different. The unit-cell of β-boron is roughly an order of 
magnitude larger than that of α-boron. Therefore, we have conducted a careful 
assessment of the convergence of our calculations with respect to k-point sampling. 
 
We first examined the convergence of the total energy difference (δEαβ) between α- and 
β-boron with respect to Ecut. For each allotrope, both the atomic positions and the cell 
parameters were optimized until the maximum force became less than 0.001 Ry/au, and 
the total stress was less than 0.1 GPa. These calculations showed that δEαβ with Ecut = 40 
Ry differs by less than 1meV/atom from that computed with Ecut = 60 Ry. Therefore, we 
chose Ecut = 40 Ry for our k-point convergence study. For systems with different cell 
sizes, a comparable number of sampling points in the Brillouin zone is given by the 
number of atoms in the unit-cell multiplied by Nk. In Fig. S2.1 we show the total energy 
as a function of this parameter for both α- and β-boron. 
 

 
Figure S2.1: The total energy as a function of the “system size” (the number of k-points 
multiplied by the number of atoms). The ‘system size’ unit is introduced to 
approximately measure the longest Bloch wave vector for a given unit-cell and the k-
points grid. The longest Bloch wavelength for a given unit-cell and a number of k-points 



can be calculated as follows. Suppose we have a cubic cell with its dimension L×L×L, 
and the k-point sampling is N3. The smallest k-vector will be, for ex., 2π/(NL)(1,0,0), 
therefore its wavelength is NL. If you take cubic of the wavelength, it becomes (NL)3, this 
is the volume of unit-cell multiplied by the number of k-points. Now, we have two 
different systems, which have different unit-cell volumes but its atomic densities are 
more or less the same. One may replace the number of atoms in the cell with the volume 
of the cell to approximate this ‘system size parameter’ if the atomic densities are similar. 
 
When determining the energy difference between α- and β-boron, one should, in 
principle, use the perfectly converged limit of the k-points grid size. Indeed, the densest 
grid we have used has a very good convergence, about 1 meV/atom change with an 
incremental change in the grid size (see Figure S2.1). However, the energy scale of 
interest is comparable to 1 meV/atom, so one should select the closest “system size” 
between the α-boron and β-boron calculations to minimize the impact of system size 
effects. It is natural to expect that the size effect on electrons could be defined as a 
function of the longest Bloch wave vector defined by the unit-cell and the k-point grid, 
which is roughly proportional to (the length)3 of the longest Bloch wave vector k (thus 
the measure of size effect on electrons). In the present study, systematic comparisons 
were made for three cases: (1) Nα=6144 and Nβ=6720, (2) Nα=20736 and Nβ=22680, (3) 
Nα=49152 and Nβ=53760, for which we found the following energy difference: (1) δEβ-

α=29.66 meV/atom, (2) δEβ-α=30.22 meV/atom, and (3) δEβ-α=30.09 meV/atom. We used 
result (3) as our best computed value of the energy difference between α- and β-boron. 
This value is slightly smaller than the one reported by Masago et al. (Ref. [9] of the 
manuscript). We believe that the more stringent convergence criteria used in our 
calculation accounts for this small discrepancy. We also note that the total energy 
computed for β-boron exhibits an unexpectedly large sensitivity to size effects, which we 
attribute to the presence of a Fermi surface in the perfect β-boron lattice (α-boron is a 
conventional semiconductor). This sensitivity to k-point sampling may also contribute to 
the discrepancy between our and Masago et al.’s results, as the Γ-point only was used in 
Ref. [9] of the manuscript. 
 
When determining the energy difference between the perfect β-rhombohedral boron and 
our 1280 boron atoms supercell results (referred as hR1280 in the manuscript), we used a 
different approach. The perfect hR105 was modeled with a 1260 atoms supercell, and the 
total energy was calculated with exactly the same parameters as the hR1280 systems, that 
is, Ecut=30Ry with Γ-point sampling and both the atomic positions and the cell 
parameters optimized until the maximum force becomes less than 0.0005 au and the 
stress on the simulation box becomes less than 0.01 GPa. This energy is taken as the 
origin for the energies of hR1280 systems relative to the perfect hR105. 
 



Supplemental material 3: Details of the POS optimization procedure using the 
lattice model Monte Carlo simulated annealing and ab-initio total energy 
calculations 
 
To achieve a high efficiency in the global search of the POS configurations, we model the 
POS in β-boron with a lattice model Hamiltonian, particularly the Cluster Expansion 
method. Therefore, we will call this optimization procedure the CEMC/ab-initio 
optimization method hereafter. In the Cluster Expansion Hamiltonian, the interaction is 
described by the site occupation energy (site local) and the pair interaction. The higher 
order terms (eg. three body interaction) are omitted for simplicity.  
 
Choice of atomic configurations for β-boron 106 and 107 atom cells: 
As mentioned in the manuscript, even if we use rhombohedral cells with 107 atom/unit 
cell, the number of possible configuration attainable in a β-lattice with partially occupied 
sites (POS) is huge, i.e. approximately 150 million (symmetry equivalent structures are 
redundantly counted here). Therefore, we reduce the number of POS configuration by  
limiting them to physically meaningful configurations within a rhombohedral unit-cell. 
The following criteria were used: 1) the standard deviation of the atomic coordination 
number from 6 was required to be less than 1.4; and 2) the occupation of site B13 (NB13) 
was restricted to be 2/3≤NB13≤1, and that of site B16 to be 0≤NB16≤1/3. The constraint on 
atomic coordination numbers was meant to minimize the number of dangling bonds and 
the number of over coordinated atoms in the system. 2) was motivated by the results of 
ab-initio structural optimization on samples with 1280 atoms/unit cell where the POS 
occupation was configured in a random manner27. These calculations showed that having 
more than two vacancies per triangle at B13 sites distorted the B28 unit to the extent that 
cannot be compatible with experimental observations. We also found that more than two 
boron atoms in a single B13 triangle make the B16 site unstable. Therefore, those POS 
configurations were excluded from our fitting. 
 
Fitting of the lattice model Hamiltonian: 
After selecting a unique set of atomic configurations with the procedure described above, 
we obtained 2591 independent configurations that include 106 and 107 atoms in a 
rhombohedral unit-cell. Ab initio total energy calculations were performed for all of these 
structures and the resulting energies were used to fit the parameters in the Cluster 
Expansion model Hamiltonian. The type of Hamiltonian is a generalized Ising lattice 
model Hamiltonian, where the occupation of each site, either vacancy or occupied, was 
mapped onto a spin model (vacancy = -1 i.e. Spin down and occupied = +1 i.e. Spin up). 
The local site occupation and the pair correlation coefficients for each POS were fitted 
using the mean square fitting method. The cutoff radius (rcut) for the longest pair 
correlation included was chosen to be rcut = 3.5A, which covers the second nearest 
neighbors (see the pair correlation function of β-boron  in  Fig. S3.1). A weighting 
factor with an exponential form, exp[-k(Ei-Elowest)], with Ei equal to the energy of a 
particular structure was used in the mean square fitting procedure in order to bias the fit 
towards low energy structures. Although the effect of this factor on the absolute total 
energy values was small, we found that it was necessary to include it in order to achieve a 
correct energy sequence for the lowest energy structures. Additional details of the 
procedure followed here can be found in Ref. [19-21] in the manuscript. 
 



 
Fig. S3.1: The pair correlation function of β-boron. The cutoff radius, 3.5A, is slightly 
larger than the 2nd nearest neighbor distance.  The 1280  atoms supercell was used for 
this calculation. The atomic positions are relaxed using ab-initio structural optimization. 
In β-boron, bond lengths vary between different units, e.g., intra-B12/B28, the inter B12-
B12 linkages, and the inter B12-B28 linkages. Furthermore, the presence of POS atoms 
induces a slight broadening of the main peaks and gives rise to small peaks in between 
the main ones. 
 



 
Figure S3.2: Comparison of total energies computed from ab-initio calculations and those 
obtained using a generalized Ising lattice model Hamiltonian. 
 
CEMC optimization using the simulated annealing technique: 
Using the coefficients determined by fitting ab-initio total energies for 106 and 107 atom 
unit cells to their respective sets of characteristic site and pair correlations, we 
constructed a spin Hamiltonian that was used for rapid energy calculations of supercells 
containing 1280 atoms (2x2x3 repetition of a primitive unit-cell). A simulated annealing 
procedure using the Metropolis algorithm (and with various cooling rates and number of 
Monte Carlo steps) was then performed to search for ground state configurations of POS 
atoms.  The simulated annealing consistently output ground state structures with an 
identical set of site and pair correlations, for a given Hamiltonian.  However, the 
specific atomic structures varied between annealing cycles, as  the lattice Hamiltonian 
did not  account for longer-range pair correlations, or  higher order multi-body 
correlations, that could break up the lattice model ground state degeneracy. Therefore, we 
observe the small fluctuations in the final ab-initio total energies (see Fig 2 of the 
manuscript). 

 
 
Refitting of the Hamiltonian for an additional iteration of  CEMC/ab-initio 
simulations 
Ab-initio total energy calculations with and without full structural optimizations were 
performed for several 1280 atom supercell boron configurations generated by the CEMC 



optimization described above. Using these energies in combination with the previously 
calculated 106 and 107 atom cell energies, two separate Hamiltonian re-
parameterizations were carried out: one for energy calculations allowing only electronic 
relaxation, and the other using the energies of full structural optimizations. The two 
different sets were designed to test the sensitivity of pair interactions to small structural 
variations. Using the relaxed total energies usually gave better final results (i.e. predicted 
structures with lower ab-initio total energies), although there were a few notable 
exceptions. 
 
Let us briefly justify the coupled ab-initio/CEMC procedure adopted in our study. The 
lattice model is an approximation to the ab-initio total energy, and it is introduced to 
accelerate the search in the global configuration space. This model was used as a means 
of systematically generating candidate supercell structures that then warranted further 
analysis with more exact but far more time-consuming ab-initio calculations. Many 
CEMC optimizations were performed that produced different annealed structures.  The 
variation in output structure was achieved by: 1) fitting the spin Hamiltonian to energy 
calculations allowing only for electronic relaxation, and fitting the spin Hamiltonian to 
calculations including also structural optimizations;  2) by varying cooling rates and 
number of steps in annealing cycles, for a given Hamiltonian; 3) by adding additional 
constraints on site occupancy so as to allow structures which were not ground states of 
the lattice model, but were still relatively low in energy, to be considered.  This set of 
candidates included structures constrained to have the experimental occupation rates, 
NB17:NB18:NB19:NB20 (see Table S2.1).  We have chosen roughly 50 lowest energy (of the 
lattice model Hamiltonian) configurations, several each from each constraint, and further 
optimized the atomic positions as well as the cell parameter using ab-initio DFT method 
as described below. 

 
The final step (ab-initio structural optimizations): 
To screen all the candidate structures generated by the CEMC optimizations, ab-initio 
structural optimizations were performed starting from the CEMC optimized  structures 
with a loose convergence criteria, e.g. the maximum force acting on an atom, Fmax, was 
chosen to be less than 0.01 au. Several lowest energy configurations from these partially 
optimized structures were then selected, and further relaxed  with Fmax < 0.0005 au and 
with the stress on the simulation box less than 0.01 GPa. Note that the change in the POS 
configuration leads to negligibly small changes in the optimized cell parameters. 
 
The resulting ab-initio total energies including the ZPE are reported in Fig. 2 of the 
manuscript. The occupation rates of these seven structures are shown in Table S2.1. 
Interestingly, none of our low energy structures possessed exactly the same occupation as 
that extracted from experiment.  Instead the relative occupation between B13-B20 could 
fluctuate significantly, with an energy variation of less than a few meV/atom, indicating 
the nearly degenerate character of β-boron. Our results suggest that the occupation rates 
extracted from experiment may correspond to high temperature equilibrium values. Most 
likely, in the real β-boron samples the POS configuration does not reach its ground state 
due to kinetic limitations. In fact, the diffusion onset found for POS atoms in our ab-
initio molecular dynamics simulations suggests that barrier heights for diffusion are of 
the order of 1000 K.



Name B13 B16 B17 B18 B19 B20 
Total energy 
[meV/atom] 

CEMC_1_A 79.167 30.556 4.167 4.167 8.333 0.694 0.774456925 
CEMC_1_B 69.444 30.556 13.889 13.889 0 0 6.699310489 
CEMC_1_C 66.667 27.778 16.667 16.667 0 0 6.046662464 
CEMC_1_D 80.556 29.167 2.778 2.778 4.167 4.167 3.610393292 
CEMC_1_E 70.833 30.556 12.5 12.5 0 0.694 3.321272343 
CEMC_2_A 70.833 31.944 12.5 12.5 0 0 3.274502778 
CEMC_2_B 79.167 33.333 4.167 4.167 6.944 0 2.993885386 
CEMC_2_C 76.389 33.333 6.944 6.944 4.167 0 2.876961473 
CEMC_2_D 70.833 30.556 12.5 12.5 0 0.694 2.730275109 
CEMC_2_E 72.222 33.333 11.111 11.111 0 0 2.517686176 
CEMC_2_F 73.611 31.944 9.722 9.722 2.778 0 2.432650603 
CEMC_2_G 73.611 33.333 9.722 9.722 1.389 0 2.328482026 
EXP A 77.7(14) 25.8(13) 3.2(8) 5.8(15) 7.2(14) 0 N/A 
EXP B 74.5(6) 27.2(7) 8.5(9) 6.6(6) 6.8(5) 3.2(4) N/A 
EXP C 73.0(5) 28.4(5) 9.7(7) 7.4(6) 7.0(5) 2.5(25) N/A 

 
 
Table S2.1: The occupation rates in the final structures from the 1st iteration 
(CEMC_1_[A-E]) and 2nd iteration (CEMC_2_[A-H]) of CEMC/ab-initio simulations. 
The zero of the total energy was set at the energy of the α-boron structure, and the 
quantum Zero Point motion Energy (ZPEβ-ZPEα=-8.2meV/atom) was not included here. 
Large fluctuations were observed in the occupation rates; NB13 = [66.667, 80.556], NB16 = 
[27.778, 33.333], NB17 = [2.778, 16.667], NB18 = [2.778, 16.667], NB19 = [0.0, 8.333], 
NB20 = [0.0, 4.167]. 
 The experimental values (EXP A, EXP B, and EXP C) are taken from Ref. [3] in 
the manuscript. The names of the samples in their paper are MG57 (A), EP (B), and 
MG179 (C), respectively. A faster cooling rate was used for MG57 than for MG197. 
Also, the site, B17, is different from the ones for EP and MG179. It is referred as B17d 
site in their paper. Probably, the faster cooling rate prevented to reach its (high 
temperature) equilibrium position.  
 



Supplemental material 4: Phonon Density of States and Quantum Zero Point 
Motion Energy (QZPE) of α and β allotropes.  
 
To evaluate the ZPE and the Helmholtz free energy of elemental boron, we performed 
full phonon dispersion curve calculations using the PWSCF program version 2.1.5, 
distributed at www.pwscf.org, which is a part of the quantum-espresso package, 
distributed at www.quantum-espresso.org. In the following, k is a wave vector specifying 
a Bloch state of electron, while q is the wave vector of a phonon mode. 
 
Computational strategy: 
We first performed ab-initio structural optimizations for both α- and β-boron structures.  
Structural optimizations were considered as converged when the maximum force Fmax 
was smaller than 0.0008 Ry/au, and the total stress was less than 0.001 GPa. For each q-
point, a set of wavefunctions were calculated and, using linear response, phonon 
frequencies were obtained. A relatively coarse q-point grid was used in our calculations. 
Phonon frequencies on a denser grid were then obtained by means of a Fourier 
interpolation scheme in order to insure convergence of the ZPE and of the Helmholtz free 
energy with respect to the integration over the first BZ. 
 
Choice of parameters: 
In our phonon calculations we used Ecut = 40 Ry for both α- and β-boron. For the 
integration of Bloch electronic states in the 1st BZ, 123 k-points for α-born, and 33 k-
points for β-boron, were used with a Monkhorst-Pack grid. The phonon calculations were 
performed on a coarse linear grid of points in the BZ (q-point), 43 q-points for α-boron, 
and 33 q-points for β-boron. By using Fourier interpolation, the phonon density of states 
was then calculated on 123 q-points grids for both α- and β-boron.  
 
Results for ZPE and Helmhotz Free Energy: 
The phonon density of states of α- and β-boron are shown in Fig. S4.1. The zero point 

motion energy, 
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branch at the wave vector q, are  ZPEα = 133.8 meV/atom and ZPEβ = 125.6 meV/atom,  
for α- and β-boron, respectively. The difference δZPE = ZPEβ-ZPEα = -8.2 meV/atom was 
added to the total energies of all β-boron structures in Fig. 2 of the manuscript. The 
vibrational contribution to the Helmholtz free energy difference between α-and β-boron 
is given in Fig. S4.2. It is seen that the vibrational free energy contribution stabilizes β- 
over α-boron at all temperatures, which is consistent with the fact that β- is softer than α-
boron (i.e. its bulk modulus is smaller).  

 
Instability of the perfect β -lattice: 
For the perfect β-lattice, at q- (0,0,0), five eigenvalues of the dynamical matrix are 
imaginary values. We have simply replaced these values with zero, in order to calculate 
the ZPE and the Helmholtz free energy. In the following, we explain why this 
approximation is justified, and why it does not affect our conclusions on the stability of 
β-boron at T = 0 K.  
 
By inspecting the corresponding eigenvectors, we can classify three of the five 



eigenmodes with imaginary frequency as acoustic modes. The absolute values of these 
frequencies are very small, 6.3 cm-1, 6.3 cm-1 , and 7.6 cm-1  (0.78  meV , 0.78  meV , 
and 0.94 meV). Given the numerical accuracy expected in our phonon calculations, it is a 
reasonable approximation to set these three frequencies to zero.  
 
The remaining two degenerate modes, with |ω|=209.6 cm-1, turned out to be stretching 
modes involving atoms that participate in “electron deficient” bonds (see Fig. S4.3 (a) 
and (b)). Our analyses of bonding properties (see manuscript) show that such modes are 
likely present only in the perfect β-boron structure, since the nature of some electron 
deficient bonds is changed by the presence of POS. Therefore, neglecting these modes 
when computing the ZPE of the defective β-structure, appears to be justified. The upper 
bound of the error coming from neglecting these two modes can be estimated by 
considering the highest phonon frequency of β-boron: ωmax ~ 1300 cm-1. The maximum 
error is 2*ωmax/(number of atoms = 105) ~ 3.0  meV/atom, which is smaller than the ~5-
7 meV/atom energy difference between α- and β-boron (see Fig. 2 in the manuscript).  

 

 
Figure S4.1: The phonon density of states of α- and β-boron, as obtained using ab-initio 
calculations. 
 
 



 
Figure S4.2: The vibrational contribution to the Helmholtz free energy difference 
between α- and β-boron. 
 
 
 

 
Figure S4.3: The arrows (magenta) show the two eigenvectors corresponding to 
imaginary eigenvalues of the dynamical matrix of the perfect β-boron structure. The 
green and the grey spheres represent boron atoms. B12 icosahedrons are green, and 
2(B28)B units are  grey. The yellow and blue spheres represent the position of the 
MLWF centers (see text).  Orbitals with different occupation numbers (see text for 
definitions) are shown by different colors (either yellow—those with the lowest 
occupation, less than 0.9, or blue—those with occupation within [0.9,0.95]).



Supplemental material 5: Analysis of bonding properties: Maximally Localized 
Wannier Functions (MLWF)  
In this work, we use Maximally Localized Wannier Functions (MLWFs) constructed 
from the eigenfunctions to identify the bonding types in β-boron. The MLWFs are known 
to provide a qualitative description of chemical bonding, for example, in an sp3 bonded 
system such as diamond, the MLWFs represents each σ-bond well. However, it is also 
known that there are a few cases where the MLWFs do not reflect the bonding character 
well. For example, in a sp2 bonding system such as graphite, the σ-bonds and the π-bonds 
are mixed, and the resulting MLWFs do not resemble either σ-bonds or π-bonds. Souza, 
Marzari and Vanderbilt have shown that by applying their disentangled MLWF method, 
one can generate MLWFs for an sp2 system, where each MLWF keeps the character of 
either a σ or a π bond (see the Ref. [24] of the manuscript). To apply this 
disentanglement method, one has to first identify the character of each eigenfunctions. On 
the set of the bands having the same character, the MLWF transformation is applied to 
avoid mixing between different types of bonds. 
 
In our MLWF analysis, we have identified the character of each eigenstate, and have 
examined several different disentanglement schemes (different ways to separate the 
bands). Our analysis indicates that the character of inter B12 and/or B28 bonds are always 
qualitatively well reproduced in the MLWFs independent of our disentanglement 
scheme28. The only exceptions are the lowest set of eigenstates separated by a gap, which 
have not been used in any of our analysis. These MLWFs have delocalized s-like 
character and are located inside the B12 and B28 clusters. All the rest of the eigenstates 
have hybridization between intra and inter units (B12 and B28) bonds, however, they could 
be qualitatively sorted as follows. The next lowest set of eigenstates correspond to either 
intra-B12 or intra-(2B28)B bonds. They are not two-center bonds, however, not exactly 
three-center bonds either (described, for example, in Ref. [25] of the manuscript). 
Overlapping with these intra-cluster like eigenstates, there are two different types of 
eigenstates inter-connecting between the B12 and/or the B28 units. Among them, the three 
center-bonds are located lower in energy than two-center bonds. The two-center bonds 
connecting between B12’s are the highest in energy. 
 
Starting from electronic eigenstates obtained in our ab-initio calculations, we obtained 
the MLWFs for the β-boron structure with the Wannier90 program developed by A. 
Mostofi, J. Yates, I. Souza, N. Marzari, and D. Vanderbilt (Ref. [39] of the manuscript), 
and the GP code developed by F. Gygi [using the algorithm presented in: Comp. Phys. 
Comm. 155, 1 (2003)]. The Wannier90 program is distributed at www.wannier.org.  
 
The computational procedure and the choice of parameters: 
We computed MLWFs for several β-boron primitive rhombohedral cells. For all of the 
calculations, 43 k-points on a uniform grid were used with Ecut = 20 Ry. The MLWFs for 
the perfect β-hR105 were also calculated with Ecut=40 Ry, and compared with those 
calculated with Ecut = 20 Ry. No essential difference was found between the results 
obtained with the two different Ecut values; therefore, all of the MLWF calculations were 
                                                
28 If the choice of bands is not appropriate, some or all MLWF will take either 
unphysically large spread or complex value with relatively large imaginary component (a 
well defined MLWF should take only real values). 



carried out with Ecut = 20 Ry. We tested the sensitivity of our results against the choice of 
initial conditions for the iterative procedure used to obtain MLWFs, We used randomly 
distributed s-type orbitals, as well as other random configurations. No difference in the 
spread and location of the resulting MLWFs was observed for all the configurations 
considered here.  
 
We used 160 single particle eigenstates, which is the number of valence states below the 
excitation gap, to build MLWFs for all β-configurations except for one. In the case where 
the β-lattice contained a B17-B18 bond, an additional state above the Fermi level was 
considered, as this system has 161 valence eigenstates. The detail is discussed later.  
  
The definition of occupation of MLWF: 
If ψmk denote single particle eigenstates for the electrons, MLWFs are defined as: 
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Using this unitary matrix, the occupation of a WF is defined as 
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Using this definition, we successfully classified electron deficient bonds, in a way that is 
consistent with phenomenological descriptions of 2- and 3-center bonds. 
 
 
The spread of MLWF versus the bonding type in the perfect β -boron: 
We first describe MLWFs of the perfect β-boron. Interestingly, the histogram of spread 
distributions has two groups of peaks represented by two relatively sharp and large peaks, 
one at Ω~1.3 and the other at Ω~1.5 (see Fig. S5.1). The MLWFs with the small spread 
group correspond to conventional 2-center-2-electron bonds, and those are the ones 
linking B12-B12 or B12-B28 units. The number of those bonds is 42. At about Ω=1.38, the 
character of MLWFs changes clearly. They correspond to either the intra-B12 bonds or 
the intra-2(B28)B bonds. Intra B12 bonds can be quantitatively defined by the Boronoi 
method and one obtains 13 MLWFs per B12 unit. To count the MLWFs belonging to the 
(2B28)B unit is more complicated due to its complex geometry. However, if one uses the 
fact that (total number of bonds) = (B12 internal bonds)+(interconnection between B12s 
and B28)+(B12 internal bonds), it can be calculated simply, that is, to subtract the 2-center-
2-electron bonds (interconnections) and the number of internal bonds of B12 from the 
total number of bonds. The total number of bonds is considered to be equal to the number 
of valence bands, 160. Therefore, the number of intra-2(B28)B bonds is calculated as 
follows: (the total number of bonds)-(the number of B12-B12 linkage plus the number of 
B12-B28 linkage)-(the total number of the intra-B12 bonds), 160-42-(13)*4=66. Note that 
the factor 4 for the number of intra-B12 bonds comes from the number of B12 units in the 
rhombohedral cell. The number of bonds obtained in this way matches exactly that 
obtained using semi-empirical rules (see Ref. [25] of the manuscript; therefore, MLWFs 
can be seen as an ab-initio foundation for semi-empirical counting rules used to 
rationalize the bonding property of boron. 
  



 
Fig. S5.1: The histogram of spread for the perfect β-hR105. 
 
 



The electronic structures of low energy hR107 systems: 
Here we show how the use of MLWFs to describe bonds leads to the identification of two 
stabilization mechanisms induced by the presence of POS in the structure of β-boron. The 
two mechanisms are: self-doping via the conversion of two-center to three-center bonds; 
and pairing of B17-B18 atoms, leading to the presence of gap levels.  
 
We first note that the short-range correlations of POS seen in the stable structures, (a)-(d) 
in Fig. S5.2 for 107 cells, are the ones consistently seen in 1280 atom supercell 
calculations, as obtained from our CEMC/ab-initio optimization; this indicates that short-
range correlations in the POS occupations are mostly responsible for the stabilization of 
the β-boron. The effect of long range correlations is most likely equal to or smaller than 
the energy fluctuations observed in the total energies of the stable 1280 atoms systems. 
Therefore, it is reasonable to assume that there is a strong analogy between the electronic 
structures of the hR107 and the 1280 atom cells. 
 
We therefore considered the hR107 atom cells. Let us compare the location of the Fermi 
levels (E=0[eV], Ef). In the perfect hR105, the Ef lies in the valence band, and the number 
of hole states in the valence band (obtained by integrating the DOS between the Ef and 
the valence band top) is 2.5 (5 electrons).  In (a), (b), and (d), the conduction band is 
partially occupied and the number of electrons in the conduction band is 1. Since 6 
electrons were added (two boron atoms are added in this case), the number of valence 
band states did not change upon the addition of two POS atoms. In (c) (B17-B18 
interstitial pairing), the same number of electrons (atoms) are added, Ef  is in the valence 
band, and the number of hole states is one, meaning that one valence state was added by 
forming the B17-B18 pair. 
 
At the correct chemical potential, i.e. 106 2/3 atoms per rhombohedral cell, (a), (b), and 
(d) become perfect semiconductors, while (c) (B17-B18 pair) has the Ef in the valence 
band. In fact, all of our stable CEMC/ab-initio optimized structures have Ef in the valence 
band as well as B17-B18 pairs. We have also performed constrained CEMC 
optimizations without a B17-B18 pair; these optimizations yielded structures with  
higher energy and hence were discarded. 
 



 
Fig. S5.2: Upper panel: Lowest 13 total energies of hR107 systems sorted by energy. Lower 
panel: The density of states of the five lowest systems separated by an energy gap. The left most 
one is the perfect β-rhombohedral boron. (a) 5B13-2B16-1B20. Five atoms in the B13 site, or 
one vacancy in the B13, as the number of B13 site is 6 per rhombohedral cell. Note: B13, B16-
B19 has 6 sites each, while B20 has 12 sites. (b) 6B13-2B16. (c) 4B13-2B16-1B17-1B18 (B17-
B18 pair). (d) 5B13-2B16-1B19. (c’) 4B13-2B16-1B17-1B18 (B17-B18 pair), here, the relative 
position of B17-B18 pair to B16 is different from (c)).  

 
The MLWFs analysis on the low energy hR107 systems: 
We also calculated the MLWFs of the systems, (a), (b), (c), (d) of the Fig. S5.2 and the 
results are shown in Fig. S5.3. In configurations (a), (b), (d), it is seen that no additional 
MLWF are formed around the POS atoms; however, the location of MLWF centers are 
slightly pulled towards the POS atom. Those POS sites, B16, B19, and B20, are the 
center of hexagonal ring consisting of alternating three intra-cluster bonds and three inter-
cluster bonds (see Fig 3 of the manuscript). Therefore, if three inter-cluster bonds (two-
center) are converted to three-center bonds, the total number of bonding states remains 
unchanged. Due to the conversion of this bonding type from two-center to three-center, 
the POS atoms can shift up the Ef without changing the number of valence states. On the 
other hand, when a B17 site and a B18 site are occupied and forms the B17-B18 pair, 
another bonding state is introduced.   
 
 



 
 
Fig. S5.3: The square modulus of the MLWFs for the systems, (a), (b), (c), (d) of Fig. 
S5.2. The iso-surface value is set at half of the maximum value of the square modulus of 
the Wannier function. The MLWFs plotted here are chosen as follows; the MLWF 
centers closer than 1.35A to the B16 atom(s) and the MLWF centers closer than 1.385A 
to the B17-B20 atoms. The conversions of bonding character from two-centre to three-
centre are clearly seen near the B16, B19 and B20 atoms. Near the B19 atom and B20 
atom [(a) and (d)] an additional MLWF is seen in each figure. They are terminating the 
dangling bond created by the B13 vacancy next to POS atoms (see Fig. 3 (b) in the 
manuscript as the comparison). In (c), a bond between the B17 atom and the B18 atom is 
formed and the other bonds nearby tend to hybridize with the dangling bonds near the 
B13 vacancies. The number of valance states is larger by one (see Fig. S5.2), compared 
to all the other systems in Fig. 3 in the manuscript, and those of Fig. S5.3. 



Supplemental material 6: The entropic contribution to the Helmholtz free energy 
The entropic contribution on the Helmholtz free energy as the function of temperature 
has been calculated from the ab-initio DFT total energies of the hR107 systems used to 
fit the lattice model Hamiltonian. The formula that we have used is as follows, 
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# , here kB is the Boltzmann constant, T is the 

temperature, Ej is the j-th hR107’s DFT energy, E0 is the lowest energy of all hR107 
structures. The sum is taken for all the structures we have calculated. Note: this is an 
approximate way to estimate the actual free energy of macroscopic system. This value 
should correspond to an upper bound. 
 
We emphasize that the free energy at ambient temperature in this plot reaches to -133 
meV/atom. 

 
Fig S6.1: The entropic contribution on the Helmholtz free energy as a function of 
temperature. 
 
  



Supplemental material 7: The electronic structures of hR1280 systems 
The electronic density of states (EDOS) of some selected systems are shown to 
demonstrate the correlation between the stabilities and the band gap and/or the gap levels. 
Although the correlation here is not strictly true for all the cases, the overall trend is more 
or less described below. 
 
The most stable hR1280 structure has a relatively clear gap (see Fig S7.1), however, there 
are a small amount of hole states in the valence band (0.5 states per rhombohedral cell), 
while most of the higher energy hR1280 structures either did not have a clear gap, or 
there were a significant amount of gap levels. 
 

 
Fig S7.1: The EDOS of the most stable hR1280 structure (left). The electronic gap is 
about 0.8 eV, however, small amount of hole states are seen above the Fermi level 
(E=0eV). A clear gap is not seen in the right one, where the energy was roughly 
6meV/atom higher due to the presence of unfavored B16-B19. 
 

 
Fig S7.2: Left: The EDOS of the structure, which was about only 2 meV/atom higher 
than the most stable one. Right: The one, whose energy was 8 meV/atom higher than the 
most stable one. Clear gaps are observed in these EDOSs, although the number of hole 
states are slightly higher than the most stable one (see above). 



 
Fig S7.3: The EDOSs of two different higher energy configurations. Left: (16 meV/atom 
higher than the most stable one) B13-B20 are randomly occupied but the occupation rates 
are set as close as to the one in the Ref. [3] of the manuscript. Right: (12 meV/atom 
higher than the most stable one) B13 is fully occupied, and B17-B20 are not occupied. 
Number of B16 atoms are chose in such a way that the total number of atoms becomes 
1280 (320 atoms per hexagonal cell). The B16’s occupation configuration is configured 
with some consideration on its stability, that is, the unfavored configurations such as two 
B16 in a one triangle (see Fig 1 of text) were avoided, otherwise, the occupation 
configuration was chosen randomly. 




